
Build Security Into
Your DevOps Strategy

W H I T E P A P E R

Build Security Into Your DevOps Strategy

PARASOFT.COM

2

Speed Quality

Security RiskCost

Ensure accurate delivery of
reliable and scalable
capabilities to support the
warfighter

Avoid compromised
systems, leakage of
sensitive information and
associated ‘negative
outcomes’

Remove the bottlenecks
from the software
development process to
accelerate delivery

Improve efficiency while
maintaining delivery
requirements

Agile and (more recently) DevOps is typically
adopted in the hopes of delivering software faster
in an iterative manner that ultimately delivers
functionality more aligned with the goals of
the end customer. Realistically, with as many as
70% of IT projects failing or falling short of their
goals, smart development teams are looking to
improve their development practices so they can
succeed with a project and create a repeatable
process for future iterations and products. This
paper investigates the processes and automation
needed to improve software security while
maintaining—and improving—quality.

It’s important to think about the drivers behind
the software development goals before jumping
into details about the implementation and the
Shift Left practices. These drivers may be budget
and quality goals in a strict risk management
framework. The important consideration here is
weaving best software development and security
practices in to support your agency's missions.

SUPPORTING EACH AGENCY’S MISSION
When focusing on accelerating delivery to end
customers, be it a product or deliverables to
other agencies, the first goal is to remove the
bottlenecks in the process. The less hurdles in
a DevSecOps pipeline, the more efficient each
cycle becomes. Verification and validation—and
the required testing at all levels of the system
architecture—are the key bottlenecks to identify
and make more efficient.

Improving the software development and
delivery process is a multifaceted problem
that juggles seemingly contradictory goals of
accelerating development, reducing costs while
increasing quality, and reducing security risks. In
terms of reducing security risk, this is a further
complex problem of improving confidentiality
(protecting information), integrity (data can be
trusted), and availability (application and data are
available when needed).

Addressing security as a top priority in software
development drives the move to DevSecOps and
ensures a secure DevOps pipeline. The term “shift
left” refers to the desire to move critical software
activities, such as verification and validation,
earlier in the software lifecycle. Finding and fixing
defects and security vulnerabilities sooner than
later has both cost and risk reduction benefits.

Build Security Into Your DevOps Strategy

PARASOFT.COM

3

The focus on security risk, mitigation, and
improvement is an ongoing effort in the public
sector. These risks can take many forms like
leaking of sensitive information (for example,
confidentiality) or disruption and denial of
service (for example, availability). The challenge
is that all these different risks are interrelated
between traditional concepts of quality and
modern concepts of security. Effectively, they
are inseparable, so accelerating deliverables
impacts security and quality. There’s no point in
reducing costs at the expense of either.

The key is to balance all these things together.
This paper focuses on security and how
organizations can implement a secure DevOps
pipeline and “bake security” in from the
beginning of the process.

SECURITY IS THE NUMBER ONE CONCERN
OF PUBLIC SECTOR ORGANIZATIONS
Security is an important concern within public
sector organizations. As a result, there are
industrial regulations to assure good security and
privacy practices such as PCI DSS for payment
processing, GDPR for privacy, and HIPAA for
healthcare. These are focused on protecting
information and making sure confidential
information isn’t leaked by accident or by attack.
In the future, more regulation is likely. California
with CCPA and New Jersey’s data-privacy bill are
additional privacy regulations to consider.

Despite these regulations in public and private
sectors, there are still security breaches. Some
are high profile. For example, the Equifax breach
gained lots of media attention as most of their
customers’ personal information, including
social security numbers, were leaked. As of the
first quarter of 2020, there has been over 17
million leaked government records, an increase
of 278% over the same period in 2019. The
U.S. Small Business Administration (SBA) had a
recent data breach that exposed personal details
of over 7,000 individuals. Investigation of that
data breach revealed the breach a result of an
application bug. Unfortunately, these are not
isolated incidents and many leaks and breaches
slip under the news radar.

The current situation of deploying insecure
software and patching it after a high-profile
breach is unacceptable. Software developers
need a new approach and need to ask
themselves: "What is it that we're doing today?
Why isn't it working? And what should we be
doing to change that?"

https://www.infosecurity-magazine.com/news/rise-leaked-government-records/
https://www.infosecurity-magazine.com/news/rise-leaked-government-records/
https://securityboulevard.com/2020/04/sba-loan-program-for-covid-19-relief-suffers-data-breach/

Build Security Into Your DevOps Strategy

PARASOFT.COM

4

The Traditional Approach to Security = Dev>Sec>Ops

Dev Stream

Dev Stream

Dev Stream

Dev Stream

SecurityQA/Integration Deploy

Specialized skills and
software = limited
resources available

THE TRADITIONAL APPROACH IS NOT WORKING
As the above data breaches show, security in public sector agencies needs
improvement. Many organizations still, in 2020, are relying on an end-of-
cycle security process. Basically, trying to bolt security in at the end of the
process. The process if more like Development (Dev) then Security (Sec) then
deployment (Ops). A waterfall approach rather than an iterative process. The
SANS Institute report, 2018 Secure DevOps: Fact or Fiction?, discusses the
current state of the art and goes into more detail of where the industry stands.

There are several challenges with the traditional approach to security. The first
challenge is a finite number of people and technologies that can be leveraged
at the late stage of the process. Secondly, security inspection required of
nearly finished software is a specialized skill. The sheer lack of people that can
understand what the security problems are and uncover them, is a large risk
to the organization. Thirdly, the security team becomes the gatekeeper and
bottleneck to the final release. Security issues and vulnerabilities so late in the
process can be difficult to fix because developers may already be reassigned.

Leaving security until the late stages of development is risky and expensive.
Issues found are more complicated to diagnose and might be difficult to
remedy—it’s nearly impossible to improve the security of an application by
testing. Vulnerabilities are discovered but might not be fixable at such a late
stage. Developers are not always security experts and complex vulnerabilities
are challenging to map to problems in the code.

https://www.sans.org/reading-room/whitepapers/cloud/paper/38690

Build Security Into Your DevOps Strategy

PARASOFT.COM

5

The Traditional Approach to Security = Dev>Sec>Ops

Security Problems

Dev Stream

Dev Stream

Dev Stream

Dev Stream

SecurityQA/Integration

It’s too close
to the release

date!

I don’t understand
the problem

We are no longer
working on that

code

That’s not a
‘real’ problem

These
problems

need fixing
I’ll have to retest

the whole
application!!

Specialized skills and
software = limited
resources available

Deploy

Results in delayed releases and/or security vulnerabilities in production

THE SHIFT-LEFT APPROACH TO SECURITY—SEC>DEV>OPS
The traditional approach and the problems created are confirmed in the 2018
SANS Institute's report. In response to this, Parasoft proposes that rather
than starting security at the end, start with security as early as possible. Shift
security to earlier in the lifecycle—with the first line of code—and to left of the
development timeline.

This security-first approach means doing more work upfront—such as threat
modeling, which feeds into development policies—and eventually defining how
the code is constructed. The desired workflow is defined early, as are the testing
practices, to ensure the creation of high quality, secure, and reliable applications.
Defining processes, tools, and techniques early provides the ability to apply
security practices throughout the development process, leveraging different
teams to perform appropriate secure coding practices to collectively contribute
towards a secure application.

Using automation tools like static application security testing (SAST/static
analysis) to find vulnerabilities in nearly complete code base is difficult.
Inevitably, it’s hard to prioritize and sift through many reported issues so late in
the process. In addition, any fixes for issues requires integration teams to retest
the whole application. Because security has such a broad global impact, the
project ends up with either a delayed release or poor quality and security, which
is a more common outcome. In too many cases, software ends up with security
issues leaking out into a production environment with a promise to fix them at
some point in the future.

Build Security Into Your DevOps Strategy

PARASOFT.COM

6

Define Secure Coding PolicyPolicy Improvements

Shift-left Approach to Security = Sec>Dev>Ops

Dev Stream

Dev Stream

Dev Stream

Dev Stream

QA/Integration Security

Code traceability
provides root-
cause analysis

Iterative
application =

early detection

Apply policy when
developing

Policy based
decisions

Developer
centric

documentation

Less late-cycle security vulnerabilities and quicker remediation

Security vulnerabilities
drive policy

improvements

Deploy

When a security vulnerability is found using a security-first, Sec>Dev>Ops
approach, it’s caught early during development. It’s quicker and cheaper to
fix. In addition, if the vulnerability is serious enough, it can drive improvement
to the security policy to prevent or identify subsequent occurrences as
well as other occurrences in the application. This continual feedback into
the process reduces repeat vulnerabilities. It’s also important to leverage
modern testing practices that the teams may already be using to provide
information and traceability, making it easier for the development and QA
teams to identify the root causes associated with the security vulnerabilities.

This proposed approach seems reasonable, especially if it provides a developer-
centric workflow. Over time, security policy improves based on feedback from
developers and testers.

The next question is: “How to make this work?” The rest of this paper discusses
how to build a secure DevOps pipeline that not only improves security but also
bakes quality into the application with improved efficiency to ensure the ongoing
delivery of high quality and secure applications.

INTEGRATING SECURITY AND QUALITY INTO THE DELIVERY PIPELINE
There are different phases of the development process. They are represented
differently depending on the audience, but one approach that’s gaining traction
for helping software teams is the Scaled Agile Framework (SAFe). SAFe is
popular in organizations that are trying to scale their Agile practices across an
enterprise, beyond individual teams and silos. SAFe identifies these different
phases of software development and clearly identifies best practices that are
appropriate for each phase (represented as sectors) of the process.

https://www.scaledagileframework.com

Build Security Into Your DevOps Strategy

PARASOFT.COM

7

The above diagram shows specific testing techniques indicated on the
continuous development cycle representation used by SAFe. These testing
techniques are used continuously as part of a DevOps pipeline, leveraging
infrastructure that can be created dynamically, that is itself secure and
assembled in a secure way. This approach is where containerization along with
Kubernetes to orchestrate containers, really shines giving software teams a
flexible and powerful framework for deploying quickly and securely. A secure
“software factory” from the start.

All development processes start with defining work items, the things that are
designed, coded, and tested. They go by many names such as requirements,
stories, backlogs, or maybe defects or problem reports. Whatever the
terminology is, there is always something that defines a unit of work.

These units of work are defined, uniquely identified, and stored in a repository.
For example, Altassian JIRA is very popular with the Agile community. Other
examples are VersionOne or RallyDev. Parasoft tools integrate with many tools
in this ecosystem including custom integrations with proprietary systems. The
bottom line is, once a work item is defined (and uniquely identified and stored),
the development teams start working on them within some development
process. It is at this very early stage where it’s best to start to build security and
quality into the application. An effective and efficient way to do this is using
static code analysis.

Build Security Into Your DevOps Strategy

PARASOFT.COM

8

Using SAST as Early as Possible
Advanced static analysis tools (also known as
static application security testing or SAST) are
more than simple code beautification tools
for making sure that source code looks nicely
formatted. Modern SAST tools find deep
reliability and security issues that are hidden
within the code, that are often overlooked by
human inspection or unit testing. Automation
helps to uncover these hard to find problems.
There are open source tools available, but they
often lack the deep analysis needed to uncover
reliability and security issues. For a detailed
discussion, read our whitepaper, How to Choose
a Modern Static Analysis Tool. Advanced SAST
tools like Parasoft Jtest, C/C++test and dotTEST
provide this level of analysis for Java, C and C++
and .NET technologies.

Easing the Adoption of SAST
Static analysis tools ship with many built-in
checkers. For example, Parasoft C/C++test
has over 4,000 different checkers. This seems
like a lot, but these are mapped to different
coding standards to make adoption easy when
implementing an industry standard. When
first using static analysis, it is common to
get many warnings, perhaps thousands. This
can overwhelm the development team so it’s
important to ease your way into adopting
the tools. More details on adopting static
analysis are provided in our whitepaper,
Getting Started with Static Analysis.

Adopt a Secure Coding Standard
Part of the adoption process should focus on
the adoption of a relevant coding standard.
For regulated industries, coding standards are
already defined (for example MISRA C 2012 or
AUTOSAR C++14 for safety critical applications).
For other types of applications, it’s a good idea
to consider coding standards focused on secure
code development. The popular options are
SEI CERT, OWASP Top 10, and CWE Top 25.

SEI CERT C/C++ differs in that it’s an engineering
standard that defines the more secure subset
of each language to use (MISRA and JSF are
similar in this regard) to build secure code
in the first place. The other standards such
as OWASP and CWE are guidelines of what
software weaknesses to avoid and more suited
for testing code. Luckily, with whatever choice
made, Parasoft tools support the most popular
coding standards out of the box with checkers
aligned to these standards, allowing for quick
creation of compliance reports. For more
details on adopting secure coding standards,
see our whitepaper, How to Select and
Implement the Right Secure Coding Standard.

Shift Testing to the Left
The well-known graph, shown below, based
on work by Capers Jones illustrates how
defects are introduced during the early
phases of the software development process.
However, these defects are identified during
the late stages of development, often when
integrating the application and system
testing starts. The costs to repair defects at
this late stage are significantly more due to
the complexity of debugging the problem,
cost of impact of the change, and cost of
the number of resources to remediate it.

https://alm.parasoft.com/en/how-to-choose-a-modern-static-analysis-tool
https://alm.parasoft.com/en/how-to-choose-a-modern-static-analysis-tool
https://alm.parasoft.com/getting-started-with-static-analysis-whitepaper
https://alm.parasoft.com/whitepaper-how-to-select-and-implement-the-right-secure-coding-standard
https://alm.parasoft.com/whitepaper-how-to-select-and-implement-the-right-secure-coding-standard

Build Security Into Your DevOps Strategy

PARASOFT.COM

9

Parasoft aims to help customers reduce the
overall cost by shifting left the identification of
defects much earlier in the process where they
are cheaper and easier to fix. This is the key
to integrating security into any development
process—techniques and tools needed to
address security issues early in the lifecycle
where it’s both cost effective and lower risk.

Early Introduction of Unit Testing
In the early stages of development, it’s important
to start unit testing and adoption of test-driven
development (TDD) practices. Building upon
established open source frameworks (such
as JUnit for Java), test automation tools (like
Parasoft Jtest) augment this base functionality
to accelerate creation and maintenance of unit
tests. Note: For C and C++ development where
there is no clear solution that supports for both
C and C++, Parasoft provides a source-based unit
testing framework with Parasoft C/C++test.

A foundation of unit tests ensures that
code is functional, well designed, and meets
requirements. One measurement of unit testing
“completion” is code coverage. This is an
important metric, but public sector organizations
unduly focus on code coverage, assuming higher
is automatically better. Ideally, there should not
be a sole focus on code coverage metrics. Rather,
the emphasis should be on proactively using

unit testing from the beginning, which results
in better code, that is easy to maintain, debug,
and regression test. Trying to add unit tests
later in the process and aggressively increase
coverage is difficult and inevitably more work.

Unit tests form the foundation layer of referred
to as the testing pyramid. This is a popular way
to describe the hierarchy of testing in Agile
development. Unit tests are quick to diagnose,
quick to execute, and adopted right from the
beginning of the development phase. Unit
testing is the ultimate shift-left component to
focus the use of tools and test automation.
Code coverage is one of many important
metrics to measure progress at this level.
Equally important is understanding how tests
correlate back to the original work items. In
other words, the requirements coverage—how
much functionality is tested and validated.

Focus on API Testing
Moving further down the software development
timeline, end-to-end testing of the assembled
application begins. At this point, it’s time to start
testing different components of it by seeing
how they work together. These tests can be
deployed in a virtual or production environment,
as appropriate. Using functional test automation,
it is possible to validate the application at the
API level, whether it’s REST APIs, web services,
or any other protocol message level testing.

1 x 4 x
10 x

40 x

640 x

‘Shift-left’ defect detection and remediation
Changing the software development culture to reduce cost and increase agility

Percentage
of defects

85%

Coding Unit Test Functional
Test

System
Test

Release

% Defects introduced

Cost to repair defect
% Defects found

1 x 4 x
10 x

40 x

640 x

‘Shift-left’ defect detection and remediation
Changing the software development culture to reduce cost and increase agility

Percentage
of defects

85%

Coding Unit Test Functional
Test

System
Test

Release

% Defects introduced

Cost to repair defect
% Defects found

https://martinfowler.com/articles/practical-test-pyramid.html

Build Security Into Your DevOps Strategy

PARASOFT.COM

10

Testing at this level can be thought of as use case
testing without the need of the user interface.
User interfaces are subject to frequent changes
and automation at this level is harder to maintain
and reuse. API level testing provides the ability
to test system functionality with more reusability
and less impact from changes at the UI level.

Automating API or service level testing is
where Parasoft SOAtest comes in. API tests
represent a valuable sweet spot. It turns
out API tests are an efficient way for testers
and developers to communicate while being
a flexible, reusable, and easier-to-diagnose
way of automating the validation of business
logic. It’s also possible to reuse API tests for
performance and penetration testing.

UI testing is still very important although manual
testing should be reserved for those types of
tests best suited for human interaction, such
as usability tests. Automating UI testing with
Selenium, for example, is a common approach.

Selenium UI test cases suffer from common UI
automated testing challenges of maintainability,
stability, and long execution times due to the
complex and brittle nature of UI tests. Parasoft
Selenic improves Selenium testing with automated
test creation from observed UI interactions and
AI-powered self-healing test execution to make
tests less susceptible to UI design changes. The
tool offers recommendations, post-execution, to
improve UI tests.

Use Service Virtualization
to Manage Dependencies
In a complex application, the challenge becomes
the test environment. Some types of tests are
difficult to support due to missing or incomplete
dependencies (like other systems, databases,
services.) It might be prohibitive to include
production systems in the testing or there
may be security or privacy concerns using
external services.

This is where a technique called service
virtualization comes in. It’s popular with the public
sector where it’s used to shift-left performance
testing—helping organizations do early-stage
performance testing as part of their Agile delivery
process. There are other powerful applications.

Service virtualization is intelligent simulation
of the behavior of a dependency as a stand-
in for the real system or service. Despite the
use of containers as backend components,
they may still need virtualization due to
difficulties setting the correct starting
state or further external dependencies.

Build Security Into Your DevOps Strategy

PARASOFT.COM

11

Maintain a Centralized View of Quality
Combining several test automation techniques results in a lot of quality
information. This data is useful, but the sheer volume makes it difficult
to pause and make some decisions about the application. To support
decision making, this data must be aggregated into a centralized view
of quality. Parasoft includes a reporting and analytics dashboard as part
of Parasoft DTP included in our test automation products. It aggregates
data from each of these testing practices and activities, bringing in coding
standard compliance reports from our SAST tool, unit test results with
code coverage information, and API test results. In addition, it offers cross
correlation (traceability) of test results back to the original work items.

As a manager, these graphical dashboards provide a top-level view of
testing progress. Additional work items can be created based on review
of the data, identified defects or other issues. They also provide a true bi-
directional traceability for a full view of your quality initiatives, the DevOps
process, and the status of quality and security practices in one place.

Build Security Into Your DevOps Strategy

PARASOFT.COM

12

INTEGRATING SECURITY INTO DEVOPS
The recommended techniques were introduced
and the problem that DevSecOps is tackling
was discussed at a high level. This next section
discusses how to apply these to build security
and quality into the product line—migrating from
DevOps to DevSecOps. Before prescribing an
approach, it is important to understand the issues
that lie ahead. Let us summarize some of the key
challenges facing the adoption of DevSecOps.

The SANS Institute 2018 Secure DevOps: Fact or
Fiction report has some interesting findings. Less
than half of the respondents who responded
to the survey used in the report have shifted
left their security initiatives. In other words, the
other half of organizations are still taking a right-
sided approach to security, looking at security
just before product release. To summarize the
three key challenges:

 » Security knowledge is limited and requires
skilled resources/tools. A common challenge
faced by software organization is the
shortage of application security personnel
and skills. The combination of adding security
in the last minute “crunch time” of the process
and a lack of qualified personnel means that
security is not addressed adequately.

 » End-of-cycle security testing results in
delays and vulnerabilities in production.
Many respondents (53%) wait until the
product release before engaging their security
resources in their organization. That is a
concern for many reasons, but it’s clearly a
resource constraint. Waiting to engage those
security resources, probably means that
they're not prepared nor ready to be part of
the process and certainly not very Agile. In
addition, these organization discover that
corrective action from security investigations
is in the hands of the developers (65%).
Meaning the remediation to a security
vulnerability is likely in the code developed

near the beginning of the project. However,
the problems are being identified right at the
end of development.

 » Unknown state of security risk until the
last moment. An important part of the
SANS institute report is respondents noted
a lack of visibility into the state of security
of an application. If management does
not understand or recognize the need to
address security risks, the team isn’t given
the direction to work on it. Without visibility,
software teams are stuck perpetually fire
fighting security issues during development.
Approaching security in this mode is not going
to help improve the process nor accelerate
deliverables.

Cross the Security Skills Gap
One of the first places to start in bridging the
gap in a software team’s security knowledge is
right at the beginning of the code writing process
with SAST/static analysis. The typical workflow
in a CI/CD process consists of the following key
elements:

 » Developers writing code in their local IDE.

 » Developers submitting this code into
source control.

Central to the CI/CD pipeline is the CI build
process that is powered by Jenkins, for example.
There are also the team leads and architects who
define the work items, monitor the process and
create the policies used by the group.

Setting and implanting the security policy is a
key starting point for security by design. Luckily,
there are industry standards such as SEI CERT,
CWE Top 25 or OWASP Top 10 available to help
guide this policy. By ensuring that code is created
in compliance with these standards prevents
software weaknesses that are the root cause of
security vulnerabilities.

https://www.sans.org/reading-room/whitepapers/cloud/paper/38690
https://www.sans.org/reading-room/whitepapers/cloud/paper/38690

Build Security Into Your DevOps Strategy

PARASOFT.COM

13

With the Parasoft solution, security policies
are edited, stored, and replicated to the team
with series of prebuilt test configurations that
have industry guidelines enabled. There are
also severities associated with each checker,
allowing further refinement. New checkers can be
created, and existing ones can be extended and
customized. There is a framework available for
teams to create their standards or design patterns.

It’s at this point that software organizations can
engage their security team early in the process
to define what standards are to be used. They

also a play a role in auditing the results to
make sure that the standards are applied.
Feedback on the policies is used to refine
configurations as needed (and propagated out
to the team automatically).

The ability to leverage industry standards with
automatic checkers right in the developer’s IDE is
a quick way to enable the whole team. A critical
aspect of bridging the security knowledge gap
is how security warnings are handled in the IDE.
All checkers have documentation associated with
them, which includes examples of a vulnerability,
an example of how to repair it, as well as links to
relevant hands-on training material—effectively
placing developers at the front line for security.

Shift-Left Security to the Developer’s Desktop
Security policies need to be part of the everyday
workflow for developers so that it becomes
habit and part of the expected workload. As
part of this, test configurations need to be
standardized—each developer works from
a common configuration—across the team.
These configurations are automatically fed
directly to each developer’s IDE where they
execute analysis locally. Static analysis and test
automation need to be supported at the IDE
level. Command line availability is important too.

Build Security Into Your DevOps Strategy

PARASOFT.COM

14

Parasoft tools support a wide range of IDEs including Eclipse, IntelliJ, Visual
Studio, and Visual Studio Code. Consider the following workflow example:

It’s important for test automation to support both the developer and build/CI use
case. This enables the entire team and multiple teams within the organization to
leverage the technologies in different ways. Testing is done on the developer's
desktop and during a secondary process that runs post-commit. These automated
test suites are part of a CI/CD pipeline. The purpose of this process is to gate a
“trust-but-verify” process to make sure that nothing slips through.

Shifting left security means developers do the early stage security work in their
IDE to catch as many software weaknesses as possible before code enters
source control. The CI/CD process is augmented to run a sanity check to capture
anything that's potentially missed, but also do a holistic analysis of the entire
code base. This approach covers more than the area that the developer was
working and catches negative impacts on the rest of the application.

Build Security Into Your DevOps Strategy

PARASOFT.COM

15

Monitor the State of Security in Realtime
Test automation and SAST generate lots of interesting data derived from
the CI/CD process. This data needs analysis and aggregation to provide a
useful high-level view, usually in terms of visual dashboards. The dashboards
provided by Parasoft tools can be customized depending on the management
task at hand. For example, the OWASP dashboard shows the status of the
project in terms of compliance with the Top 10 guidelines.

The dashboards are customizable depending on need, such as integrating data
from security metrics with other testing practices. For example, the dashboard
below may represent a team’s live dashboard. This integrates metrics from work
items, security data on the right-hand side, both CWE Top 25 and OWASP Top
10 compliance, static analysis violation data, and test results with coverage
information. All of that, in one centralized location, is a centralized view of
security and quality.

Build Security Into Your DevOps Strategy

PARASOFT.COM

16

Realtime Compliance Reporting
If compliance to a standard is required by the end customer or a desired
goal for a project, it’s important that the test automation tools provide the
necessary information to demonstrate compliance. Compliance is more
than a final yes or no answer at the end of the project. In fact, deviations
are inevitable, and the record of these deviations must be recorded with
appropriate documentation.

Compliance reporting is something that needs monitoring on an ongoing basis to
avoid a mad rush near the end of the project. Just as it’s difficult to add security
at the end of a project, it’s difficult to make software comply to a standard at late
stages of development. Automated compliance reporting via dashboards and
full form reports are important. An example of an OWASP compliance report
from Parasoft is shown below. These reports include support for compliance
requirements such as a weakness detection plan, deviation reports, and so on.

As with any test or SAST result, standard deviations can turn into work items for
developers. Centralized analysis as part of the CI/CD pipeline is available to all
members of the team via web portals and dashboards but also in the developer's
IDE. Developers avoid the need to scan for compliance locally. Deviations are
imported from the central CI/CD process and new ones can be reported locally
and uploaded to the repository. As such, previously discussed workflows apply.

Build Security Into Your DevOps Strategy

PARASOFT.COM

17

SUMMARY
Security is top of mind for public sector
organizations, but they struggle to integrate
security into their existing development
practices. It’s important to think of security and
quality together as they are two sides to the
same coin. Software teams know that quality, like
products meeting requirements while operating
reliably, is important. It’s difficult to build quality
software without requirements or improve
reliability at the end of development. It’s hard to
“test” security into an application. With quality
and security considered together, software
teams must build it in with the right practices,
processes, and tools.

To build in security, it’s necessary to analyze
and test code earlier in the software lifecycle—
shifted to the left. However, there are barriers,
which include lack of security skills in the general
developer population and lack of visibility into

the current state of security of the product.
These challenges are overcome using workflows
that leverage test automation tools, which
support both the developer’s desktop and the
centralized build process in a CI/CD pipeline.

Centralized data analysis drives the decision
making to help focus developers on weaknesses
that emerge in the software. The early use of
SAST tools educates developers on which coding
practices to avoid while preventing insecure
code from even entering the code base.

Parasoft’s solutions focus on speeding up
software quality and security efforts by
quickly identifying and fixing issues found
during testing—from the start of the SDLC. By
integrating continuous quality and security into
the CI/CD pipeline, projects can be delivered on
time and on budget—with less engineering hours
lost waiting for results, searching for issues, and
digging through logs.

ABOUT PARASOFT
Parasoft helps organizations continuously deliver quality software with its market-proven,
integrated suite of automated software testing tools. Supporting the embedded, enterprise, and
IoT markets, Parasoft’s technologies reduce the time, effort, and cost of delivering secure, reliable,
and compliant software by integrating everything from deep code analysis and unit testing to
web UI and API testing, plus service virtualization and complete code coverage, into the delivery
pipeline. Bringing all this together, Parasoft’s award winning reporting and analytics dashboard
delivers a centralized view of quality enabling organizations to deliver with confidence and succeed
in today’s most strategic ecosystems and development initiatives—cybersecure, safety-critical,
agile, DevOps, and continuous testing.

CONTACT US

Build security into your software development process from the beginning.
Talk to one of our experts to get started today.

https://www.parasoft.com/company/contacts

